1.0 release
This commit is contained in:
parent
50379e9a2a
commit
1cc245af07
141
README.md
141
README.md
|
@ -1,88 +1,71 @@
|
|||
Generate a roll table using weighted distributions of random options.
|
||||
Given source.yaml containing options such as:
|
||||
# RollTables
|
||||
|
||||
option1:
|
||||
- key1: description
|
||||
- key2: description
|
||||
...
|
||||
...
|
||||
RollTables is a python library for generating tables suitable for selecting random options using dice rolls.
|
||||
|
||||
Generate a random table:
|
||||
## Quick Start
|
||||
|
||||
>>> print(RollTable(path='source.yaml'))
|
||||
d1 option6 key3 description
|
||||
d2 option2 key2 description
|
||||
d3 option3 key4 description
|
||||
...
|
||||
|
||||
You can customize the frequency distribution, headers, and table size by
|
||||
defining metadata in your source file.
|
||||
|
||||
Using Metadata:
|
||||
|
||||
By default options are given uniform distribution and random keys will be
|
||||
selected from each option with equal probability. This behaviour can be
|
||||
changed by adding an optional metadata section to the source file:
|
||||
|
||||
metadata:
|
||||
frequenceis:
|
||||
default:
|
||||
option1: 0.5
|
||||
option2: 0.1
|
||||
option3: 0.3
|
||||
option4: 0.1
|
||||
|
||||
This will guarantee that random keys from option1 are selected 50% of the
|
||||
time, from option 2 10% of the time, and so forth. Frequencies should add
|
||||
up to 1.0.
|
||||
|
||||
If the metadata section includes 'frequencies', The 'default' distribution
|
||||
must be defined. Additional optional distributions may also be defined, if
|
||||
you want to provide alternatives for specific use cases.
|
||||
|
||||
metadata:
|
||||
frequenceis:
|
||||
default:
|
||||
option1: 0.5
|
||||
option2: 0.1
|
||||
option3: 0.3
|
||||
option4: 0.1
|
||||
inverted:
|
||||
option1: 0.1
|
||||
option2: 0.3
|
||||
option3: 0.1
|
||||
option4: 0.5
|
||||
|
||||
A specific frequency distribution can be specifed by passing the 'frequency'
|
||||
parameter at instantiation:
|
||||
|
||||
>>> t = RollTable('source.yaml', frequency='inverted')
|
||||
|
||||
The metadata section can also override the default size of die to use for
|
||||
the table (a d20). For example, this creates a 100-row table:
|
||||
|
||||
metadata:
|
||||
die: 100
|
||||
|
||||
This too can be overridden at instantiation:
|
||||
|
||||
>>> t = RollTable('source.yaml', die=64)
|
||||
|
||||
Finally, headers for your table columns can also be defined in metadata:
|
||||
```
|
||||
# example.yaml
|
||||
|
||||
# metadata is optional
|
||||
metadata:
|
||||
# headers are optional
|
||||
headers:
|
||||
- Roll
|
||||
- Frequency
|
||||
- Description
|
||||
- Effect
|
||||
# The first column header always applies to the frequency label;
|
||||
# you can hide this (or any other column) by setting the header to null
|
||||
- Rarity
|
||||
- Color
|
||||
- Notes
|
||||
# frequencies are optional; by default distribution will be uniform
|
||||
frequencies:
|
||||
# multiple distributions may be specified besides 'default'
|
||||
default:
|
||||
- common: 0.5
|
||||
- uncommon: 0.3
|
||||
- rare: 0.15
|
||||
- wondrous: 0.05
|
||||
# 'common' is the text label for the frequency distribution
|
||||
common:
|
||||
# each time a 'common' value is selected for the table, it will be
|
||||
# chosen at random from the following values
|
||||
- red
|
||||
- orange
|
||||
- yellow
|
||||
uncommon:
|
||||
- green
|
||||
- blue
|
||||
rare:
|
||||
- indigo
|
||||
- violet
|
||||
wondrous:
|
||||
# choices can be definitions; both key and the value will be added as columns
|
||||
- octarine: the color of magic
|
||||
```
|
||||
|
||||
This will yield output similar to:
|
||||
```
|
||||
% poetry run roll-table example.yaml
|
||||
┏━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ Roll ┃ Rarity ┃ Color ┃ Notes ┃
|
||||
┡━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ d1-d5 │ common │ red │ │
|
||||
│ d6-d10 │ common │ yellow │ │
|
||||
│ d11-d12 │ rare │ indigo │ │
|
||||
│ d13 │ rare │ violet │ │
|
||||
│ d14-d15 │ uncommon │ blue │ │
|
||||
│ d16-d19 │ uncommon │ green │ │
|
||||
│ d20 │ wondrous │ octarine │ the color of magic │
|
||||
└─────────┴──────────┴──────────┴────────────────────┘
|
||||
```
|
||||
|
||||
>>> print(RollTable(path='source.yaml'))
|
||||
Roll Category Name Effect
|
||||
d1 option6 key3 description
|
||||
d2 option2 key2 description
|
||||
d3 option3 key4 description
|
||||
...
|
||||
### Library Use
|
||||
|
||||
```
|
||||
from rolltable import tables
|
||||
|
||||
sources = [
|
||||
Path('spells.yaml').read_text(),
|
||||
Path('weapons.yaml').read_text(),
|
||||
Path('items.yaml').read_text()
|
||||
]
|
||||
rt = tables.RollTable(sources, die=100)
|
||||
```
|
||||
|
|
37
example.yaml
Normal file
37
example.yaml
Normal file
|
@ -0,0 +1,37 @@
|
|||
# example.yaml
|
||||
#
|
||||
# This is an annotated example source file for generating random roll tables.
|
||||
#
|
||||
# metadata is optional
|
||||
metadata:
|
||||
# headers are optional
|
||||
headers:
|
||||
# The first column header always applies to the frequency label;
|
||||
# you can hide this (or any other column) by setting the header to null
|
||||
- Rarity
|
||||
- Color
|
||||
- Notes
|
||||
# frequencies are optional; by default distribution will be uniform
|
||||
frequencies:
|
||||
# multiple distributions may be specified besides 'default'
|
||||
default:
|
||||
common: 0.5
|
||||
uncommon: 0.3
|
||||
rare: 0.15
|
||||
wondrous: 0.05
|
||||
# 'common' is the text label for the frequency distribution
|
||||
common:
|
||||
# each time a 'common' value is selected for the table, it will be
|
||||
# chosen at random from the following values
|
||||
- red
|
||||
- orange
|
||||
- yellow
|
||||
uncommon:
|
||||
- green
|
||||
- blue
|
||||
rare:
|
||||
- indigo
|
||||
- violet
|
||||
wondrous:
|
||||
# choices can be definitions; both key and the value will be added as columns
|
||||
- octarine: the color of magic
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = 'dnd-rolltable'
|
||||
version = '0.9'
|
||||
version = '1.0'
|
||||
license = 'The Unlicense'
|
||||
authors = ['Greg Boyington <evilchili@gmail.com>']
|
||||
description = 'Generate roll tables using weighted random distributions'
|
||||
|
|
|
@ -2,6 +2,8 @@ from rolltable import tables
|
|||
import typer
|
||||
from rich import print
|
||||
from rich.table import Table
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
|
||||
app = typer.Typer()
|
||||
|
@ -9,28 +11,28 @@ app = typer.Typer()
|
|||
|
||||
@app.command("roll-table")
|
||||
def create(
|
||||
source: str = typer.Argument(
|
||||
sources: List[Path] = typer.Argument(
|
||||
...,
|
||||
help="Path to the yaml-formatted source file."),
|
||||
help="Path to one or more yaml-formatted source file."),
|
||||
frequency: str = typer.Option(
|
||||
'default',
|
||||
help='use the specified frequency from the source file'),
|
||||
die: int = typer.Option(
|
||||
20,
|
||||
help='The size of the die for which to create a table'),
|
||||
collapse: bool = typer.Option(
|
||||
collapsed: bool = typer.Option(
|
||||
True,
|
||||
help='If True, collapse multiple die values with the same option.')
|
||||
):
|
||||
"""
|
||||
CLI for creating roll tables.
|
||||
"""
|
||||
with open(source, 'r') as src:
|
||||
rt = tables.RollTable(source=src, frequency=frequency, die=die,
|
||||
collapsed=collapse)
|
||||
rt.load_source()
|
||||
table = Table(*rt.rows[0])
|
||||
for row in rt.rows[1:]:
|
||||
|
||||
rt = tables.RollTable([Path(s).read_text() for s in sources], frequency=frequency, die=die)
|
||||
|
||||
rows = rt.rows if collapsed else rt.expanded_rows
|
||||
table = Table(*rows[0])
|
||||
for row in rows[1:]:
|
||||
table.add_row(*row)
|
||||
print(table)
|
||||
|
||||
|
|
|
@ -1,7 +1,62 @@
|
|||
import yaml
|
||||
import random
|
||||
from collections.abc import Generator
|
||||
from typing import Optional, Mapping, List, IO
|
||||
from typing import Optional, List, IO
|
||||
|
||||
|
||||
class DataSource:
|
||||
"""
|
||||
Represents a yaml data source used to generate roll tables.
|
||||
|
||||
Attributes:
|
||||
|
||||
source - the IO source to parse
|
||||
frequency - the frequency distribution to apply
|
||||
headers - an array of header strings
|
||||
data - The parsed YAML data
|
||||
|
||||
Methods:
|
||||
|
||||
load_source - Read and parse the source, populating the attributes
|
||||
|
||||
"""
|
||||
def __init__(self, source: IO, frequency: str = 'default') -> None:
|
||||
"""
|
||||
Initialize a DataSource instance.
|
||||
|
||||
Args:
|
||||
source - an IO object to read source from
|
||||
frequency - the name of the frequency distribution to use; must
|
||||
be defined in the source file's metadata.
|
||||
"""
|
||||
self.source = source
|
||||
self.frequency = frequency
|
||||
self.headers = []
|
||||
self.frequencies = None
|
||||
self.data = None
|
||||
self.load_source()
|
||||
|
||||
def load_source(self) -> None:
|
||||
"""
|
||||
Cache the yaml source and the parsed or generated metadata.
|
||||
"""
|
||||
if self.data:
|
||||
return
|
||||
|
||||
self.data = yaml.safe_load(self.source)
|
||||
metadata = self.data.pop('metadata', {})
|
||||
|
||||
num_keys = len(self.data.keys())
|
||||
default_freq = num_keys / 100
|
||||
|
||||
if 'headers' in metadata:
|
||||
self.headers = metadata['headers']
|
||||
|
||||
frequencies = {
|
||||
'default': dict([(k, default_freq) for k in self.data.keys()])
|
||||
}
|
||||
if 'frequencies' in metadata:
|
||||
frequencies.update(**metadata['frequencies'])
|
||||
self.frequencies = frequencies[self.frequency]
|
||||
|
||||
|
||||
class RollTable:
|
||||
|
@ -10,53 +65,33 @@ class RollTable:
|
|||
|
||||
Instance Attributes:
|
||||
|
||||
data - The parsed source data, minus any metadata
|
||||
die - the size of the die for which to create a table (default: 20)
|
||||
frequencies - frequency distribution applied when selecting random values
|
||||
headers - array of column headers (default: do not print headers)
|
||||
(default: uniform across all options)
|
||||
rows - An array of table rows derived from the values
|
||||
values - An array of randomly-selected values for each die roll
|
||||
sources - One or more yaml strings to parse as data sources
|
||||
frequency - The frequency distribution to apply when populating the table
|
||||
die - The size of the die for which to create a table (default: 20)
|
||||
headers - An array of header strings
|
||||
rows - An array of table headers and rows
|
||||
expanded_rows - An array of table headers and rows, one per die roll value
|
||||
|
||||
Instance Methods:
|
||||
Usage:
|
||||
|
||||
load_source - Read and parse the source. Will be called automatically when necessary.
|
||||
table = RollTable(['source.yaml'], die=4)
|
||||
print(table)
|
||||
>>> Roll Item
|
||||
d1 Foo
|
||||
d2-d4 Bar
|
||||
"""
|
||||
|
||||
def __init__(self, source: IO, frequency: str = 'default',
|
||||
die: Optional[int] = 20, collapsed: bool = True):
|
||||
"""
|
||||
Initialize a RollTable instance.
|
||||
|
||||
Args:
|
||||
source - an IO object to read source from
|
||||
frequency - the name of the frequency distribution to use; must
|
||||
be defined in the source file's metadata.
|
||||
die - specify a die size
|
||||
collapsed - If True, collapse multiple die values with the same
|
||||
options into a single line.
|
||||
"""
|
||||
def __init__(self, sources: List[str], frequency: str = 'default',
|
||||
die: Optional[int] = 20) -> None:
|
||||
self._sources = sources
|
||||
self._frequency = frequency
|
||||
self._die = die
|
||||
self._collapsed = collapsed
|
||||
self._headers = None
|
||||
self._frequencies = None
|
||||
self._source = source
|
||||
self._data = None
|
||||
self._values = None
|
||||
self._rows = None
|
||||
|
||||
@property
|
||||
def frequencies(self):
|
||||
if not self._data:
|
||||
self.load_source()
|
||||
return self._frequencies
|
||||
|
||||
@property
|
||||
def data(self) -> Mapping:
|
||||
if not self._data:
|
||||
self.load_source()
|
||||
return self._data
|
||||
self._headers = None
|
||||
self._header_excludes = None
|
||||
self._generated_values = None
|
||||
self._config()
|
||||
|
||||
@property
|
||||
def die(self) -> int:
|
||||
|
@ -64,163 +99,98 @@ class RollTable:
|
|||
|
||||
@property
|
||||
def headers(self) -> List:
|
||||
if not self._data:
|
||||
self.load_source()
|
||||
return self._headers
|
||||
|
||||
@property
|
||||
def values(self) -> List:
|
||||
if not self._values:
|
||||
def _values(self) -> List:
|
||||
if not self._generated_values:
|
||||
def values_from_datasource(ds):
|
||||
weights = []
|
||||
options = []
|
||||
for (option, weight) in self.frequencies.items():
|
||||
for (option, weight) in ds.frequencies.items():
|
||||
weights.append(weight)
|
||||
options.append(option)
|
||||
freqs = random.choices(options, weights=weights, k=self.die)
|
||||
self._values = []
|
||||
values = []
|
||||
for option in freqs:
|
||||
self._values += [(option, random.choice(self.data[option]))]
|
||||
if hasattr(self._values[0][1], 'keys'):
|
||||
self._values = sorted(self._values, key=lambda val: list(val[1].keys())[0])
|
||||
choice = random.choice(ds.data[option])
|
||||
if hasattr(choice, 'keys'):
|
||||
c = [option]
|
||||
for (k, v) in choice.items():
|
||||
c.extend([k, v])
|
||||
values.append(c)
|
||||
else:
|
||||
self._values = sorted(self._values)
|
||||
return self._values
|
||||
values.append([option, choice])
|
||||
return sorted(values)
|
||||
|
||||
ds_values = [values_from_datasource(t) for t in self._data]
|
||||
|
||||
self._generated_values = []
|
||||
for face in range(self._die):
|
||||
value = []
|
||||
for index, ds in enumerate(ds_values):
|
||||
value += ds_values[index][face]
|
||||
self._generated_values.append(value)
|
||||
return self._generated_values
|
||||
|
||||
@property
|
||||
def rows(self) -> List:
|
||||
if not self._rows:
|
||||
rows = []
|
||||
if self.headers:
|
||||
rows.append(['Roll'] + self.headers)
|
||||
if self._collapsed:
|
||||
for line in self._collapsed_rows():
|
||||
rows.append(line)
|
||||
else:
|
||||
for (i, item) in enumerate(self.values):
|
||||
(cat, option) = item
|
||||
if hasattr(option, 'items'):
|
||||
(k, v) = list(option.items())[0]
|
||||
rows.append([f'd{i+1}', cat, k, v])
|
||||
else:
|
||||
rows.append([f'd{i+1}', cat, option])
|
||||
self._rows = rows
|
||||
def formatted(lastrow, offset, row, i):
|
||||
fmt = f'd{i}' if offset + 1 == i else f'd{offset+1}-d{i}'
|
||||
return self._column_filter([fmt] + lastrow)
|
||||
|
||||
lastrow = None
|
||||
offset = 0
|
||||
self._rows = [self._column_filter(['Roll'] + self.headers)]
|
||||
for face in range(self._die):
|
||||
row = self._values[face]
|
||||
if not lastrow:
|
||||
lastrow = row
|
||||
offset = face
|
||||
continue
|
||||
if row != lastrow:
|
||||
self._rows.append(formatted(lastrow, offset, row, face))
|
||||
lastrow = row
|
||||
offset = face
|
||||
self._rows.append(formatted(lastrow, offset, row, face+1))
|
||||
return self._rows
|
||||
|
||||
def load_source(self) -> None:
|
||||
@property
|
||||
def expanded_rows(self) -> List:
|
||||
self._rows = [self._column_filter(['Roll'] + self.headers)]
|
||||
for face in range(self._die):
|
||||
row = self._values[face]
|
||||
self._rows.append(self._column_filter([f'd{face+1}'] + row))
|
||||
return self._rows
|
||||
|
||||
def _config(self):
|
||||
"""
|
||||
Cache the yaml source and the parsed or generated metadata.
|
||||
Parse data sources, generate headers, and create the column filters
|
||||
"""
|
||||
if self._data:
|
||||
return
|
||||
|
||||
self._data = yaml.safe_load(self._source)
|
||||
metadata = self._data.pop('metadata', {})
|
||||
# create the datasource objects
|
||||
self._data = []
|
||||
for src in self._sources:
|
||||
ds = DataSource(src, frequency=self._frequency)
|
||||
ds.load_source()
|
||||
self._data.append(ds)
|
||||
|
||||
num_keys = len(self._data.keys())
|
||||
default_freq = num_keys / 100
|
||||
# merge the headers
|
||||
self._headers = []
|
||||
for ds in self._data:
|
||||
self._headers += ds.headers
|
||||
|
||||
if 'headers' in metadata:
|
||||
self._headers = metadata['headers']
|
||||
# identify which columsn to hide in the output by recording where a
|
||||
# None header appears
|
||||
self._header_excludes = []
|
||||
for i in range(len(self._headers)):
|
||||
if self.headers[i] is None:
|
||||
self._header_excludes.append(i+1) # +1 to account for the 'Roll' column
|
||||
|
||||
frequencies = {
|
||||
'default': dict([(k, default_freq) for k in self._data.keys()])
|
||||
}
|
||||
if 'frequencies' in metadata:
|
||||
frequencies.update(**metadata['frequencies'])
|
||||
self._frequencies = frequencies[self._frequency]
|
||||
|
||||
def _collapsed_rows(self) -> Generator[list]:
|
||||
"""
|
||||
Generate an array of column values for each row of the table but
|
||||
sort the values and squash multiple rows with the same values into one,
|
||||
with a range for the die roll instead of a single die. That is,
|
||||
|
||||
d1 foo bar baz
|
||||
d2 foo bar baz
|
||||
|
||||
becomes
|
||||
|
||||
d1-d2 foo bar baz
|
||||
"""
|
||||
def collapsed(last_val, offset, val, i):
|
||||
(cat, option) = last_val
|
||||
if hasattr(option, 'items'):
|
||||
(k, v) = list(*option.items())
|
||||
else:
|
||||
k = option
|
||||
v = ''
|
||||
if offset + 1 == i:
|
||||
return [f'd{i}', cat, k, v]
|
||||
else:
|
||||
return [f'd{offset+1}-d{i}', cat, k, v]
|
||||
|
||||
last_val = None
|
||||
offset = 0
|
||||
for (i, val) in enumerate(self.values):
|
||||
if not last_val:
|
||||
last_val = val
|
||||
offset = i
|
||||
continue
|
||||
if val != last_val:
|
||||
yield collapsed(last_val, offset, val, i)
|
||||
last_val = val
|
||||
offset = i
|
||||
yield collapsed(last_val, offset, val, i+1)
|
||||
def _column_filter(self, row):
|
||||
return [col for (pos, col) in enumerate(row) if pos not in self._header_excludes]
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""
|
||||
Return the rows as a single string.
|
||||
"""
|
||||
rows = list(self.rows)
|
||||
str_format = '\t'.join(['{:10s}'] * len(rows[0]))
|
||||
return "\n".join([str_format.format(*row) for row in rows])
|
||||
|
||||
|
||||
class CombinedTable(RollTable):
|
||||
"""
|
||||
Create a table that is a union of other tables.
|
||||
"""
|
||||
|
||||
def __init__(self, tables: List[str], die: Optional[int] = 20):
|
||||
self._die = die
|
||||
self._tables = tables
|
||||
self._rows = None
|
||||
self._headers = None
|
||||
|
||||
# reset any cached values
|
||||
for t in self._tables:
|
||||
t._rows = None
|
||||
t._values = None
|
||||
t._collapsed = False
|
||||
t._die = self._die
|
||||
|
||||
@property
|
||||
def tables(self) -> List:
|
||||
return self._tables
|
||||
|
||||
@property
|
||||
def rows(self) -> List:
|
||||
"""
|
||||
Compute the rows of the table by concatenating the rows of the individual tables.
|
||||
"""
|
||||
if not self._rows:
|
||||
|
||||
# if one table has headers, they must all have them, so fill with empty strings.
|
||||
if sum([1 for t in self.tables if t.headers]) < len(self.tables):
|
||||
for t in self.tables:
|
||||
if not t.headers:
|
||||
t._headers = ['.'] * len(t.values[0])
|
||||
|
||||
self._rows = []
|
||||
for i in range(self._die):
|
||||
row = [self.tables[0].rows[i][0]]
|
||||
for x in range(len(self.tables)):
|
||||
for col in self.tables[x].rows[i][1:]:
|
||||
row.append(col)
|
||||
self._rows.append(row)
|
||||
return self._rows
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
print(RollTable(path=sys.argv[1], die=int(sys.argv[2])))
|
||||
|
|
|
@ -46,6 +46,10 @@ option 1:
|
|||
"""
|
||||
|
||||
fixture_no_descriptions = """
|
||||
metadata:
|
||||
headers:
|
||||
- option
|
||||
- choice
|
||||
option 1:
|
||||
- choice 1
|
||||
"""
|
||||
|
@ -80,45 +84,41 @@ B3:
|
|||
|
||||
|
||||
def test_combined_tables():
|
||||
tA = tables.RollTable(fixture_combined_A)
|
||||
tB = tables.RollTable(fixture_combined_B)
|
||||
|
||||
combined = tables.CombinedTable(tables=[tA, tB], die=6)
|
||||
assert 'A1' in str(combined)
|
||||
assert 'B1' in str(combined)
|
||||
combined = tables.RollTable([fixture_combined_A, fixture_combined_B], die=6)
|
||||
assert str(combined)
|
||||
|
||||
|
||||
def test_table_end_to_end():
|
||||
assert str(tables.RollTable(fixture_source))
|
||||
assert str(tables.RollTable([fixture_source]))
|
||||
|
||||
|
||||
def test_table_end_to_end_with_metadata():
|
||||
assert str(tables.RollTable(fixture_metadata + fixture_source))
|
||||
assert str(tables.RollTable([fixture_metadata + fixture_source]))
|
||||
|
||||
|
||||
def test_table_frequency():
|
||||
t = tables.RollTable(fixture_metadata + fixture_source, frequency='nondefault')
|
||||
assert t.frequencies['Option 1'] == 0.0
|
||||
assert t.frequencies['Option 2'] == 0.1
|
||||
assert t.frequencies['Option 3'] == 0.9
|
||||
t = tables.RollTable([fixture_metadata + fixture_source], frequency='nondefault')
|
||||
assert t._data[0].frequencies['Option 1'] == 0.0
|
||||
assert t._data[0].frequencies['Option 2'] == 0.1
|
||||
assert t._data[0].frequencies['Option 3'] == 0.9
|
||||
|
||||
|
||||
def test_one_option():
|
||||
t = tables.RollTable(fixture_one_choice, die=1)
|
||||
assert t.values == [('option 1', {'choice 1': 'description 1'})]
|
||||
t = tables.RollTable([fixture_one_choice], die=1)
|
||||
assert t._values == [['option 1', 'choice 1', 'description 1']]
|
||||
|
||||
|
||||
def test_collapsed():
|
||||
t = tables.RollTable(fixture_repeated_choices, die=6, collapsed=True)
|
||||
assert len(list(t.rows)) == 1
|
||||
t = tables.RollTable([fixture_repeated_choices], die=6)
|
||||
assert len(list(t.rows)) == 2 # (+1 for headers)
|
||||
|
||||
|
||||
def test_not_collapsed():
|
||||
t = tables.RollTable(fixture_repeated_choices, die=6, collapsed=False)
|
||||
assert len(list(t.rows)) == 6
|
||||
t = tables.RollTable([fixture_repeated_choices], die=6)
|
||||
assert len(list(t.expanded_rows)) == 7 # (+1 for headers)
|
||||
|
||||
|
||||
def test_no_descriptions():
|
||||
t = tables.RollTable(fixture_no_descriptions, die=1)
|
||||
t = tables.RollTable([fixture_no_descriptions], die=1)
|
||||
assert 'd1' in str(t)
|
||||
assert 'option 1' in str(t)
|
||||
|
|
Loading…
Reference in New Issue
Block a user