212 lines
6.7 KiB
Python
212 lines
6.7 KiB
Python
import yaml
|
|
import random
|
|
from typing import Optional, List, IO
|
|
|
|
|
|
class DataSource:
|
|
"""
|
|
Represents a yaml data source used to generate roll tables.
|
|
|
|
Attributes:
|
|
|
|
source - the IO source to parse
|
|
frequency - the frequency distribution to apply
|
|
headers - an array of header strings
|
|
data - The parsed YAML data
|
|
|
|
Methods:
|
|
|
|
load_source - Read and parse the source, populating the attributes
|
|
|
|
"""
|
|
def __init__(self, source: IO, frequency: str = 'default') -> None:
|
|
"""
|
|
Initialize a DataSource instance.
|
|
|
|
Args:
|
|
source - an IO object to read source from
|
|
frequency - the name of the frequency distribution to use; must
|
|
be defined in the source file's metadata.
|
|
"""
|
|
self.source = source
|
|
self.frequency = frequency
|
|
self.headers = []
|
|
self.frequencies = None
|
|
self.data = None
|
|
self.load_source()
|
|
|
|
def load_source(self) -> None:
|
|
"""
|
|
Cache the yaml source and the parsed or generated metadata.
|
|
"""
|
|
if self.data:
|
|
return
|
|
|
|
self.data = yaml.safe_load(self.source)
|
|
metadata = self.data.pop('metadata', {})
|
|
|
|
num_keys = len(self.data.keys())
|
|
default_freq = num_keys / 100
|
|
|
|
if 'headers' in metadata:
|
|
self.headers = metadata['headers']
|
|
|
|
frequencies = {
|
|
'default': dict([(k, default_freq) for k in self.data.keys()])
|
|
}
|
|
if 'frequencies' in metadata:
|
|
frequencies.update(**metadata['frequencies'])
|
|
self.frequencies = frequencies[self.frequency]
|
|
|
|
|
|
class RollTable:
|
|
"""
|
|
Generate a roll table using weighted distributions of random options.
|
|
|
|
Instance Attributes:
|
|
|
|
sources - One or more yaml strings to parse as data sources
|
|
frequency - The frequency distribution to apply when populating the table
|
|
die - The size of the die for which to create a table (default: 20)
|
|
headers - An array of header strings
|
|
rows - An array of table headers and rows
|
|
expanded_rows - An array of table headers and rows, one per die roll value
|
|
|
|
Usage:
|
|
|
|
table = RollTable(['source.yaml'], die=4)
|
|
print(table)
|
|
>>> Roll Item
|
|
d1 Foo
|
|
d2-d4 Bar
|
|
"""
|
|
|
|
def __init__(self, sources: List[str], frequency: str = 'default',
|
|
die: Optional[int] = 20) -> None:
|
|
self._sources = sources
|
|
self._frequency = frequency
|
|
self._die = die
|
|
self._data = None
|
|
self._rows = None
|
|
self._headers = None
|
|
self._header_excludes = None
|
|
self._generated_values = None
|
|
self._config()
|
|
|
|
def as_yaml(self, expanded=False) -> dict:
|
|
struct = {}
|
|
for row in self.rows[1:]:
|
|
struct[row[0]] = {}
|
|
for idx, col in enumerate(row[1:]):
|
|
struct[row[0]][self.headers[idx]] = col
|
|
return yaml.dump(struct)
|
|
|
|
@property
|
|
def die(self) -> int:
|
|
return self._die
|
|
|
|
@property
|
|
def headers(self) -> List:
|
|
return self._headers
|
|
|
|
@property
|
|
def _values(self) -> List:
|
|
if not self._generated_values:
|
|
def values_from_datasource(ds):
|
|
weights = []
|
|
options = []
|
|
for (option, weight) in ds.frequencies.items():
|
|
weights.append(weight)
|
|
options.append(option)
|
|
freqs = random.choices(options, weights=weights, k=self.die)
|
|
values = []
|
|
for option in freqs:
|
|
if not ds.data[option]:
|
|
values.append([option])
|
|
continue
|
|
choice = random.choice(ds.data[option])
|
|
if hasattr(choice, 'keys'):
|
|
c = [option]
|
|
for (k, v) in choice.items():
|
|
c.extend([k, v])
|
|
values.append(c)
|
|
else:
|
|
values.append([option, choice])
|
|
return sorted(values)
|
|
|
|
ds_values = [values_from_datasource(t) for t in self._data]
|
|
|
|
self._generated_values = []
|
|
for face in range(self._die):
|
|
value = []
|
|
for index, ds in enumerate(ds_values):
|
|
value += ds_values[index][face]
|
|
self._generated_values.append(value)
|
|
return self._generated_values
|
|
|
|
@property
|
|
def rows(self) -> List:
|
|
def formatted(lastrow, offset, row, i):
|
|
fmt = f'd{i}' if offset + 1 == i else f'd{offset+1}-d{i}'
|
|
return self._column_filter([fmt] + lastrow)
|
|
|
|
lastrow = None
|
|
offset = 0
|
|
self._rows = [self._column_filter(['Roll'] + self.headers)]
|
|
for face in range(self._die):
|
|
row = self._values[face]
|
|
if not lastrow:
|
|
lastrow = row
|
|
offset = face
|
|
continue
|
|
if row != lastrow:
|
|
self._rows.append(formatted(lastrow, offset, row, face))
|
|
lastrow = row
|
|
offset = face
|
|
self._rows.append(formatted(lastrow, offset, row, face+1))
|
|
return self._rows
|
|
|
|
@property
|
|
def expanded_rows(self) -> List:
|
|
self._rows = [self._column_filter(['Roll'] + self.headers)]
|
|
for face in range(self._die):
|
|
row = self._values[face]
|
|
self._rows.append(self._column_filter([f'd{face+1}'] + row))
|
|
return self._rows
|
|
|
|
@property
|
|
def as_markdown(self) -> str:
|
|
return ''
|
|
|
|
def _config(self):
|
|
"""
|
|
Parse data sources, generate headers, and create the column filters
|
|
"""
|
|
|
|
# create the datasource objects
|
|
self._data = []
|
|
for src in self._sources:
|
|
ds = DataSource(src, frequency=self._frequency)
|
|
ds.load_source()
|
|
self._data.append(ds)
|
|
|
|
# merge the headers
|
|
self._headers = []
|
|
for ds in self._data:
|
|
self._headers += ds.headers
|
|
|
|
# identify which columsn to hide in the output by recording where a
|
|
# None header appears
|
|
self._header_excludes = []
|
|
for i in range(len(self._headers)):
|
|
if self.headers[i] is None:
|
|
self._header_excludes.append(i+1) # +1 to account for the 'Roll' column
|
|
|
|
def _column_filter(self, row):
|
|
return [col for (pos, col) in enumerate(row) if pos not in self._header_excludes]
|
|
|
|
def __repr__(self) -> str:
|
|
rows = list(self.rows)
|
|
str_format = '\t'.join(['{:10s}'] * len(rows[0]))
|
|
return "\n".join([str_format.format(*row) for row in rows])
|