dnd-rolltable/rolltable/tables.py
2023-12-22 21:25:47 -08:00

304 lines
10 KiB
Python

import yaml
import random
from csv2md.table import Table
from collections.abc import Iterable
from typing import Optional, List, IO, Union
class DataSource:
"""
Represents a yaml data source used to generate roll tables.
Attributes:
source - the IO source to parse
frequency - the frequency distribution to apply
headers - an array of header strings
data - The parsed YAML data
Methods:
load_source - Read and parse the source, populating the attributes
"""
def __init__(self, source: IO, frequency: str = 'default') -> None:
"""
Initialize a DataSource instance.
Args:
source - an IO object to read source from
frequency - the name of the frequency distribution to use; must
be defined in the source file's metadata.
"""
self.source = source
self.frequency = frequency
self.headers = []
self.frequencies = None
self.data = None
self.metadata = None
self.load_source()
def load_source(self) -> None:
"""
Cache the yaml source and the parsed or generated metadata.
"""
if self.data:
return
self.read_source()
self.init_headers()
self.init_frequencies()
def read_source(self) -> None:
self.data = yaml.safe_load(self.source)
self.metadata = self.data.pop('metadata', {})
def init_headers(self) -> None:
if 'headers' in self.metadata:
self.headers = self.metadata['headers']
def init_frequencies(self) -> None:
num_keys = len(self.data.keys())
default_freq = num_keys / 100
frequencies = {
'default': dict([(k, default_freq) for k in self.data.keys()])
}
if 'frequencies' in self.metadata:
frequencies.update(**self.metadata['frequencies'])
self.frequencies = frequencies[self.frequency]
def random_frequencies(self, count: int = 1) -> list:
"""
Choose random option names from the frequency table.
"""
weights = []
options = []
for (option, weight) in self.frequencies.items():
weights.append(weight)
options.append(option)
return random.choices(options, weights=weights, k=count)
def random_values(self, count: int = 1) -> list:
"""
Return a list of random values from the data set, as a list of lists.
"""
return [
self.get_entries(option, rand=True) for option in self.random_frequencies(count)
]
def as_dict(self) -> dict:
data = dict()
for name in self.data.keys():
entries = self.get_entries(name, rand=False)
headers = self.headers
for i in range(0, len(self.headers) - len(entries[0])):
headers.append(f"{i:3f}", i)
items = {(k, v) for k, v in zip(self.headers, self.get_entries(name))}
print(items)
data[name] = dict(items)
return data
def get_entries(self, option, rand: bool = False) -> list:
"""
For a random item or each item in the specified option in the data source,
return a flattened list of the option, the select item, and the item's value (if any).
"""
# If there is no data for the specified option, stop now.
flattened = [option]
if not self.data[option]:
return flattened
if hasattr(self.data[option], 'keys'):
# if the option is a dict, we assume the values are lists; we select a random item
# and prepend the key to the value list as our random selection. For example, given:
#
# >>> self.data[option] == {'One': ['bar', 'baz'], 'Two': ['qaz', 'qux']}
#
# choices might then be: ['One', 'bar', 'baz']
#
if rand:
k, v = random.choice(list(self.data[option].items()))
choices = [[k] + v]
else:
choices = [
[k] + v for k, v in list(self.data[option].items())
]
else:
# If the option is either a list or a string, just select it.
if rand:
choices = [random.choice(self.data[option])]
else:
choices = self.data[option]
for choice in choices:
# If the randomly-selected choice is a dict, choose a random item and return a list consisting
# of the option name, the key, and the value, flattening the # value if it is also a list.
if hasattr(choice, 'keys'):
for (k, v) in choice.items():
if type(v) is list:
flattened.extend([k, *v])
else:
flattened.extend([k, v])
continue
# if the member is a list, return the flattened list
if type(choice) is list:
flattened.extend(choice)
continue
# otherwise, return a list consisting of option and choice
flattened.append(choice)
return flattened
class RollTable:
"""
Generate a roll table using weighted distributions of random options.
Instance Attributes:
sources - One or more yaml strings to parse as data sources
frequency - The frequency distribution to apply when populating the table
die - The size of the die for which to create a table (default: 20)
headers - An array of header strings
rows - An array of table headers and rows
expanded_rows - An array of table headers and rows, one per die roll value
Usage:
table = RollTable(['source.yaml'], die=4)
print(table)
>>> Roll Item
d1 Foo
d2-d4 Bar
"""
def __init__(self, sources: Union[List[str], List[DataSource]], frequency: str = 'default',
die: Optional[int] = 20, hide_rolls: bool = False) -> None:
self._sources = sources
self._frequency = frequency
self._die = die
self._hide_rolls = hide_rolls
self._data = None
self._rows = None
self._headers = None
self._header_excludes = None
self._generated_values = None
self._config()
def as_yaml(self, expanded=False) -> dict:
struct = {}
for row in self.rows[1:]:
struct[row[0]] = {}
# pad rows with empty cols as necessary
cols = row[1:] + [''] * (len(self.headers) - len(row[1:]))
for idx, col in enumerate(cols):
struct[row[0]][self.headers[idx] if idx < len(self.headers) else '_'] = col
return yaml.dump(struct, sort_keys=False)
@property
def datasources(self) -> List:
return self._data
@property
def die(self) -> int:
return self._die
@property
def headers(self) -> List:
return self._headers
@property
def _values(self) -> List:
if not self._generated_values:
ds_values = [t.random_values(self.die) for t in self._data]
self._generated_values = []
for face in range(self._die):
value = []
for index, ds in enumerate(ds_values):
value += ds_values[index][face]
self._generated_values.append(value)
return self._generated_values
@property
def rows(self) -> List:
def formatted(lastrow, offset, row, i):
thisrow = [f'd{i}' if offset + 1 == i else f'd{offset+1}-d{i}']
thisrow += self._flatten(lastrow)
return self._column_filter(thisrow)
lastrow = None
offset = 0
self._rows = [self._column_filter(['Roll'] + self.headers)]
for face in range(self._die):
row = self._values[face]
if not lastrow:
lastrow = row
offset = face
continue
if row != lastrow:
self._rows.append(formatted(lastrow, offset, row, face))
lastrow = row
offset = face
self._rows.append(formatted(lastrow, offset, row, face+1))
return self._rows
@property
def expanded_rows(self) -> List:
self._rows = [self._column_filter(['Roll'] + self.headers)]
for face in range(self._die):
row = self._values[face]
self._rows.append(self._column_filter([f'd{face+1}'] + row))
return self._rows
@property
def as_markdown(self) -> str:
return Table(self.rows).markdown()
def _config(self):
"""
Parse data sources, generate headers, and create the column filters
"""
# create the datasource objects
self._data = []
for src in self._sources:
if type(src) is str:
ds = DataSource(src, frequency=self._frequency)
ds.load_source()
self._data.append(ds)
else:
self._data.append(src)
# merge the headers
self._headers = []
for ds in self._data:
self._headers += ds.headers
# identify which columsn to hide in the output by recording where a
# None header appears
self._header_excludes = []
for i in range(len(self._headers)):
if self.headers[i] is None:
self._header_excludes.append(i)
def _column_filter(self, row):
cols = [col or '' for (pos, col) in enumerate(row) if pos not in self._header_excludes]
# pad the row with empty columns if there are more headers than columns
cols = cols + [''] * (1 + len(self.headers) - len(row))
# strip the leading column if we're hiding the dice rolls
return cols[1:] if self._hide_rolls else cols
def _flatten(self, obj: List) -> List:
for member in obj:
if isinstance(member, Iterable) and not isinstance(member, (str, bytes)):
yield from self._flatten(member)
else:
yield member
def __repr__(self) -> str:
rows = list(self.rows)
str_format = '\t'.join(['{:10s}'] * len(rows[0]))
return "\n".join([str_format.format(*[r or '' for r in row]) for row in rows])