284 lines
9.5 KiB
Python
284 lines
9.5 KiB
Python
import yaml
|
|
import random
|
|
from csv2md.table import Table
|
|
from collections.abc import Iterable
|
|
from typing import Optional, List, IO, Union
|
|
|
|
|
|
class DataSource:
|
|
"""
|
|
Represents a yaml data source used to generate roll tables.
|
|
|
|
Attributes:
|
|
|
|
source - the IO source to parse
|
|
frequency - the frequency distribution to apply
|
|
headers - an array of header strings
|
|
data - The parsed YAML data
|
|
|
|
Methods:
|
|
|
|
load_source - Read and parse the source, populating the attributes
|
|
|
|
"""
|
|
def __init__(self, source: IO, frequency: str = 'default') -> None:
|
|
"""
|
|
Initialize a DataSource instance.
|
|
|
|
Args:
|
|
source - an IO object to read source from
|
|
frequency - the name of the frequency distribution to use; must
|
|
be defined in the source file's metadata.
|
|
"""
|
|
self.source = source
|
|
self.frequency = frequency
|
|
self.headers = []
|
|
self.frequencies = None
|
|
self.data = None
|
|
self.metadata = None
|
|
self.load_source()
|
|
|
|
def load_source(self) -> None:
|
|
"""
|
|
Cache the yaml source and the parsed or generated metadata.
|
|
"""
|
|
if self.data:
|
|
return
|
|
self.read_source()
|
|
self.init_headers()
|
|
self.init_frequencies()
|
|
|
|
def read_source(self) -> None:
|
|
self.data = yaml.safe_load(self.source)
|
|
self.metadata = self.data.pop('metadata', {})
|
|
|
|
def init_headers(self) -> None:
|
|
if 'headers' in self.metadata:
|
|
self.headers = self.metadata['headers']
|
|
|
|
def init_frequencies(self) -> None:
|
|
num_keys = len(self.data.keys())
|
|
default_freq = num_keys / 100
|
|
|
|
frequencies = {
|
|
'default': dict([(k, default_freq) for k in self.data.keys()])
|
|
}
|
|
if 'frequencies' in self.metadata:
|
|
frequencies.update(**self.metadata['frequencies'])
|
|
self.frequencies = frequencies[self.frequency]
|
|
|
|
def random_frequencies(self, count: int = 1) -> list:
|
|
"""
|
|
Choose random option names from the frequency table.
|
|
"""
|
|
weights = []
|
|
options = []
|
|
for (option, weight) in self.frequencies.items():
|
|
weights.append(weight)
|
|
options.append(option)
|
|
return random.choices(options, weights=weights, k=count)
|
|
|
|
def random_values(self, count: int = 1) -> list:
|
|
"""
|
|
Return a list of random values from the data set, as a list of lists.
|
|
"""
|
|
return [
|
|
self._random_choice_from_option(option) for option in self.random_frequencies(count)
|
|
]
|
|
|
|
def _random_choice_from_option(self, option: str) -> list:
|
|
"""
|
|
Select a random item from the specified option in the data source, and return a flattened
|
|
list of the option, the select item, and the item's value (if any).
|
|
"""
|
|
|
|
# If there is no data for the specified option, stop now.
|
|
flattened = [option]
|
|
if not self.data[option]:
|
|
return flattened
|
|
|
|
if hasattr(self.data[option], 'keys'):
|
|
# if the option is a dict, we assume the values are lists; we select a random item
|
|
# and prepend the key to the value list as our random selection. For example, given:
|
|
#
|
|
# >>> self.data[option] == {'One': ['bar', 'baz'], 'Two': ['qaz', 'qux']}
|
|
#
|
|
# choice might then be: ['One', 'bar', 'baz']
|
|
#
|
|
k, v = random.choice(list(self.data[option].items()))
|
|
choice = [k] + v
|
|
else:
|
|
# If the option is either a list or a string, just select it.
|
|
choice = random.choice(self.data[option])
|
|
|
|
# If the randomly-selected choice is a dict, choose a random item and return a list consisting
|
|
# of the option name, the key, and the value, flattening the # value if it is also a list.
|
|
if hasattr(choice, 'keys'):
|
|
for (k, v) in choice.items():
|
|
if type(v) is list:
|
|
flattened.extend([k, *v])
|
|
else:
|
|
flattened.extend([k, v])
|
|
return flattened
|
|
|
|
# if the member is a list, return the flattened list
|
|
if type(choice) is list:
|
|
flattened.extend(choice)
|
|
return flattened
|
|
|
|
# otherwise, return a list consisting of option and choice
|
|
flattened.append(choice)
|
|
return flattened
|
|
|
|
|
|
class RollTable:
|
|
"""
|
|
Generate a roll table using weighted distributions of random options.
|
|
|
|
Instance Attributes:
|
|
|
|
sources - One or more yaml strings to parse as data sources
|
|
frequency - The frequency distribution to apply when populating the table
|
|
die - The size of the die for which to create a table (default: 20)
|
|
headers - An array of header strings
|
|
rows - An array of table headers and rows
|
|
expanded_rows - An array of table headers and rows, one per die roll value
|
|
|
|
Usage:
|
|
|
|
table = RollTable(['source.yaml'], die=4)
|
|
print(table)
|
|
>>> Roll Item
|
|
d1 Foo
|
|
d2-d4 Bar
|
|
"""
|
|
|
|
def __init__(self, sources: Union[List[str], List[DataSource]], frequency: str = 'default',
|
|
die: Optional[int] = 20, hide_rolls: bool = False) -> None:
|
|
self._sources = sources
|
|
self._frequency = frequency
|
|
self._die = die
|
|
self._hide_rolls = hide_rolls
|
|
self._data = None
|
|
self._rows = None
|
|
self._headers = None
|
|
self._header_excludes = None
|
|
self._generated_values = None
|
|
self._config()
|
|
|
|
def as_yaml(self, expanded=False) -> dict:
|
|
struct = {}
|
|
for row in self.rows[1:]:
|
|
struct[row[0]] = {}
|
|
# pad rows with empty cols as necessary
|
|
cols = row[1:] + [''] * (len(self.headers) - len(row[1:]))
|
|
for idx, col in enumerate(cols):
|
|
struct[row[0]][self.headers[idx] if idx < len(self.headers) else '_'] = col
|
|
return yaml.dump(struct, sort_keys=False)
|
|
|
|
@property
|
|
def datasources(self) -> List:
|
|
return self._data
|
|
|
|
@property
|
|
def die(self) -> int:
|
|
return self._die
|
|
|
|
@property
|
|
def headers(self) -> List:
|
|
return self._headers
|
|
|
|
@property
|
|
def _values(self) -> List:
|
|
if not self._generated_values:
|
|
ds_values = [t.random_values(self.die) for t in self._data]
|
|
self._generated_values = []
|
|
for face in range(self._die):
|
|
value = []
|
|
for index, ds in enumerate(ds_values):
|
|
value += ds_values[index][face]
|
|
self._generated_values.append(value)
|
|
return self._generated_values
|
|
|
|
@property
|
|
def rows(self) -> List:
|
|
def formatted(lastrow, offset, row, i):
|
|
thisrow = [f'd{i}' if offset + 1 == i else f'd{offset+1}-d{i}']
|
|
thisrow += self._flatten(lastrow)
|
|
return self._column_filter(thisrow)
|
|
|
|
lastrow = None
|
|
offset = 0
|
|
self._rows = [self._column_filter(['Roll'] + self.headers)]
|
|
|
|
for face in range(self._die):
|
|
row = self._values[face]
|
|
if not lastrow:
|
|
lastrow = row
|
|
offset = face
|
|
continue
|
|
if row != lastrow:
|
|
self._rows.append(formatted(lastrow, offset, row, face))
|
|
lastrow = row
|
|
offset = face
|
|
self._rows.append(formatted(lastrow, offset, row, face+1))
|
|
return self._rows
|
|
|
|
@property
|
|
def expanded_rows(self) -> List:
|
|
self._rows = [self._column_filter(['Roll'] + self.headers)]
|
|
for face in range(self._die):
|
|
row = self._values[face]
|
|
self._rows.append(self._column_filter([f'd{face+1}'] + row))
|
|
return self._rows
|
|
|
|
@property
|
|
def as_markdown(self) -> str:
|
|
return Table(self.rows).markdown()
|
|
|
|
def _config(self):
|
|
"""
|
|
Parse data sources, generate headers, and create the column filters
|
|
"""
|
|
|
|
# create the datasource objects
|
|
self._data = []
|
|
for src in self._sources:
|
|
if type(src) is str:
|
|
ds = DataSource(src, frequency=self._frequency)
|
|
ds.load_source()
|
|
self._data.append(ds)
|
|
else:
|
|
self._data.append(src)
|
|
|
|
# merge the headers
|
|
self._headers = []
|
|
for ds in self._data:
|
|
self._headers += ds.headers
|
|
|
|
# identify which columsn to hide in the output by recording where a
|
|
# None header appears
|
|
self._header_excludes = []
|
|
for i in range(len(self._headers)):
|
|
if self.headers[i] is None:
|
|
self._header_excludes.append(i)
|
|
|
|
def _column_filter(self, row):
|
|
cols = [col or '' for (pos, col) in enumerate(row) if pos not in self._header_excludes]
|
|
# pad the row with empty columns if there are more headers than columns
|
|
cols = cols + [''] * (1 + len(self.headers) - len(row))
|
|
# strip the leading column if we're hiding the dice rolls
|
|
return cols[1:] if self._hide_rolls else cols
|
|
|
|
def _flatten(self, obj: List) -> List:
|
|
for member in obj:
|
|
if isinstance(member, Iterable) and not isinstance(member, (str, bytes)):
|
|
yield from self._flatten(member)
|
|
else:
|
|
yield member
|
|
|
|
def __repr__(self) -> str:
|
|
rows = list(self.rows)
|
|
str_format = '\t'.join(['{:10s}'] * len(rows[0]))
|
|
return "\n".join([str_format.format(*[r or '' for r in row]) for row in rows])
|