import yaml import random from collections.abc import Generator from typing import Optional, Mapping, List class RollTable: """ Generate a roll table using weighted distributions of random options. Usage: Given source.yaml containing options such as: option1: - key1: description - key2: description ... ... Generate a random table: >>> print(RollTable(path='source.yaml')) d1 option6 key3 description d2 option2 key2 description d3 option3 key4 description ... You can customize the frequency distribution, headers, and table size by defining metadata in your source file. Using Metadata: By default options are given uniform distribution and random keys will be selected from each option with equal probability. This behaviour can be changed by adding an optional metadata section to the source file: metadata: frequenceis: default: option1: 0.5 option2: 0.1 option3: 0.3 option4: 0.1 This will guarantee that random keys from option1 are selected 50% of the time, from option 2 10% of the time, and so forth. Frequencies should add up to 1.0. If the metadata section includes 'frequencies', The 'default' distribution must be defined. Additional optional distributions may also be defined, if you want to provide alternatives for specific use cases. metadata: frequenceis: default: option1: 0.5 option2: 0.1 option3: 0.3 option4: 0.1 inverted: option1: 0.1 option2: 0.3 option3: 0.1 option4: 0.5 A specific frequency distribution can be specifed by passing the 'frequency' parameter at instantiation: >>> t = RollTable('source.yaml', frequency='inverted') The metadata section can also override the default size of die to use for the table (a d20). For example, this creates a 100-row table: metadata: die: 100 This too can be overridden at instantiation: >>> t = RollTable('source.yaml', die=64) Finally, headers for your table columns can also be defined in metadata: metadata: headers: - Roll - Category - Description - Effect This will yield output similar to: >>> print(RollTable(path='source.yaml')) Roll Category Name Effect d1 option6 key3 description d2 option2 key2 description d3 option3 key4 description ... """ def __init__(self, path: str, frequency: str = 'default', die: Optional[int] = None, collapsed: bool = True): """ Initialize a RollTable instance. Args: path - the path to the source file frequency - the name of the frequency distribution to use; must be defined in the source file's metadata. die - specify a die size collapsed - If True, collapse multiple die values with the same options into a single line. """ self._path = path self._frequency = frequency self._die = die self._collapsed = collapsed self._metadata = None self._source = None self._values = None def _load_source(self) -> None: """ Cache the yaml source and parsed or generated the metadata. """ if self._source: return with open(self._path, 'r') as source: self._source = yaml.safe_load(source) def _defaults(): num_keys = len(self._source.keys()) default_freq = num_keys/100 return { 'headers': [''] * num_keys, 'die': self._die, 'frequencies': { 'default': [(k, default_freq) for k in self._source.keys()] } } self._metadata = self._source.pop('metadata', _defaults()) def _collapsed_lines(self) -> Generator[list]: """ Generate an array of column values for each row of the table but sort the values and squash multiple rows with the same values into one, with a range for the die roll instead of a single die. That is, d1 foo bar baz d2 foo bar baz becomes d1-d2 foo bar baz """ def collapsed(last_val, offset, val, i): (cat, option) = last_val (k, v) = list(*option.items()) if offset + 1 == i: return [f'd{i}', cat, k, v] else: return [f'd{offset+1}-d{i}', cat, k, v] last_val = None offset = 0 for (i, val) in enumerate(self.values): if not last_val: last_val = val offset = i continue if val != last_val: yield collapsed(last_val, offset, val, i) last_val = val offset = i yield collapsed(last_val, offset, val, i+1) @property def freqtable(self): return self.metadata['frequencies'][self._frequency] @property def source(self) -> Mapping: """ The parsed source data """ if not self._source: self._load_source() return self._source @property def metadata(self) -> Mapping: """ The parsed or generated metadata """ if not self._metadata: self._load_source() return self._metadata @property def values(self) -> List: """ Randomly pick values from the source data following the frequency distrubtion of the options. """ if not self._values: weights = [] options = [] for (option, weight) in self.freqtable.items(): weights.append(weight) options.append(option) freqs = random.choices(options, weights=weights, k=self._die or self.metadata['die']) self._values = [] for option in freqs: self._values += [(option, random.choice(self.source[option]))] return sorted(self._values, key=lambda val: list(val[1].values())[0]) @property def lines(self) -> Generator[List]: """ Yield a list of table rows suitable for formatting as output. """ yield self.metadata['headers'] if self._collapsed: for line in self._collapsed_lines(): yield line else: for (i, item) in enumerate(self.values): (cat, option) = item (k, v) = list(option.items())[0] yield [f'd{i+1}', cat, k, v] def __str__(self) -> str: """ Return the lines as a single string. """ return "\n".join([ '{:10s}\t{:8s}\t{:20s}\t{:s}'.format(*line) for line in self.lines ]) if __name__ == '__main__': import sys print(RollTable(path=sys.argv[1], die=int(sys.argv[2])))