171 lines
5.7 KiB
Python
171 lines
5.7 KiB
Python
import random
|
|
import yaml
|
|
|
|
from typing import IO
|
|
|
|
|
|
class UnknownFrequencyError(Exception):
|
|
"""
|
|
Thrown when attempting to set a datasource's fequency without a frequency table in the metadat.
|
|
"""
|
|
|
|
|
|
class DataSource:
|
|
"""
|
|
Represents a yaml data source used to generate roll tables.
|
|
|
|
Attributes:
|
|
|
|
source - the IO source to parse
|
|
frequency - the frequency distribution to apply
|
|
headers - an array of header strings
|
|
data - The parsed YAML data
|
|
|
|
Methods:
|
|
|
|
load_source - Read and parse the source, populating the attributes
|
|
|
|
"""
|
|
def __init__(self, source: IO, frequency: str = 'default') -> None:
|
|
"""
|
|
Initialize a DataSource instance.
|
|
|
|
Args:
|
|
source - an IO object to read source from
|
|
frequency - the name of the frequency distribution to use; must
|
|
be defined in the source file's metadata.
|
|
"""
|
|
self.source = source
|
|
self.frequency = frequency
|
|
self.headers = []
|
|
self.frequencies = None
|
|
self.data = None
|
|
self.metadata = None
|
|
self.load_source()
|
|
|
|
def load_source(self) -> None:
|
|
"""
|
|
Cache the yaml source and the parsed or generated metadata.
|
|
"""
|
|
if self.data:
|
|
return
|
|
self.read_source()
|
|
self.init_headers()
|
|
self.init_frequencies()
|
|
|
|
def read_source(self) -> None:
|
|
self.data = yaml.safe_load(self.source)
|
|
self.metadata = self.data.pop('metadata', {})
|
|
|
|
def init_headers(self) -> None:
|
|
if 'headers' in self.metadata:
|
|
self.headers = self.metadata['headers']
|
|
|
|
def init_frequencies(self) -> None:
|
|
num_keys = len(self.data.keys())
|
|
default_freq = num_keys / 100
|
|
|
|
frequencies = {
|
|
'default': dict([(k, default_freq) for k in self.data.keys()])
|
|
}
|
|
if 'frequencies' in self.metadata:
|
|
frequencies.update(**self.metadata['frequencies'])
|
|
self.frequencies = frequencies[self.frequency]
|
|
|
|
def set_frequency(self, frequency: str) -> None:
|
|
"""
|
|
Select a new frequency distribution from the data source metadata.
|
|
"""
|
|
if 'frequencies' not in self.metadata:
|
|
raise UnknownFrequencyError(
|
|
"Cannnot set a new frequency because there is no frequency table in the metadata."
|
|
)
|
|
if frequency not in self.metadata['frequencies']:
|
|
raise UnknownFrequencyError(f"{frequency} is not present in the frequency table.")
|
|
self.frequency = frequency
|
|
self.init_frequencies()
|
|
|
|
def random_frequencies(self, count: int = 1) -> list:
|
|
"""
|
|
Choose random option names from the frequency table.
|
|
"""
|
|
weights = []
|
|
options = []
|
|
for (option, weight) in self.frequencies.items():
|
|
weights.append(weight)
|
|
options.append(option)
|
|
return random.choices(options, weights=weights, k=count)
|
|
|
|
def random_values(self, count: int = 1) -> list:
|
|
"""
|
|
Return a list of random values from the data set, as a list of lists.
|
|
"""
|
|
return [
|
|
self.get_entries(option, rand=True) for option in self.random_frequencies(count)
|
|
]
|
|
|
|
def as_dict(self) -> dict:
|
|
"""
|
|
Return the contents of the data source as a dict.
|
|
"""
|
|
data = dict()
|
|
for name in self.data.keys():
|
|
entries = self.get_entries(name, rand=False)
|
|
items = {(k, v) for k, v in zip(self.headers, entries)}
|
|
data[name] = dict(items)
|
|
return data
|
|
|
|
def get_entries(self, option, rand: bool = False) -> list:
|
|
"""
|
|
For a random item or each item in the specified option in the data source,
|
|
return a flattened list of the option, the select item, and the item's value (if any).
|
|
"""
|
|
|
|
# If there is no data for the specified option, stop now.
|
|
flattened = []
|
|
if not self.data[option]:
|
|
return [option]
|
|
|
|
if hasattr(self.data[option], 'keys'):
|
|
# if the option is a dict, we assume the values are lists; we select a random item
|
|
# and prepend the key to the value list as our random selection. For example, given:
|
|
#
|
|
# >>> self.data[option] == {'One': ['bar', 'baz'], 'Two': ['qaz', 'qux']}
|
|
#
|
|
# choices might then be: ['One', 'bar', 'baz']
|
|
#
|
|
if rand:
|
|
k, v = random.choice(list(self.data[option].items()))
|
|
choices = [[k] + v]
|
|
else:
|
|
choices = [
|
|
[k] + v for k, v in list(self.data[option].items())
|
|
]
|
|
else:
|
|
# If the option is either a list or a string, just select it.
|
|
choices = self.data[option]
|
|
|
|
for choice in choices:
|
|
# If the randomly-selected choice is a dict, choose a random item and return a list consisting
|
|
# of the option name, the key, and the value, flattening the # value if it is also a list.
|
|
if hasattr(choice, 'keys'):
|
|
for (k, v) in choice.items():
|
|
if type(v) is list:
|
|
flattened.append([option, k, *v])
|
|
else:
|
|
flattened.append([option, k, v])
|
|
continue
|
|
|
|
# if the member is a list, return the flattened list
|
|
elif type(choice) is list:
|
|
flattened.extend(choice)
|
|
continue
|
|
|
|
# otherwise, return a list consisting of option and choice
|
|
flattened.append(choice)
|
|
|
|
# Return all randomized values or just 1.
|
|
if rand:
|
|
return random.choice(flattened)
|
|
return flattened
|